18 research outputs found

    An overview of herbal nutraceuticals, their extraction, formulation, therapeutic effects and potential toxicity

    Get PDF
    Herbal nutraceuticals are foods derived from plants and/or their derivatives, such as oils, roots, seeds, berries, or flowers, that support wellness and combat acute and chronic ailments induced by unhealthful dietary habits. The current review enlists various traditional as well as unexplored herbs including angelica, burnet, caraway, laurel, parsley, yarrow, and zedoary, which are rich sources of bioactive components, such as aloesin, angelicin, trans-anethole, and cholesteric-7-en-3β-ol. The review further compares some of the extraction and purification techniques, namely, Soxhlet extraction, ultrasound assisted extraction, microwave assisted extraction, supercritical fluid extraction, accelerated solvent extraction, hydro-distillation extraction, ultra-high-pressure extraction, enzyme assisted extraction, pulsed electric field extraction, bio affinity chromatography, cell membrane chromatography, and ligand fishing. Herbal nutraceuticals can be purchased in varied formulations, such as capsules, pills, powders, liquids, and gels. Some of the formulations currently available on the market are discussed here. Further, the significance of herbal nutraceuticals in prevention and cure of diseases, such as diabetes, obesity, dementia, hypertension, and hypercholesterolemia; and as immunomodulators and antimicrobial agents has been discussed. Noteworthy, the inappropriate use of these herbal nutraceuticals can lead to hepatotoxicity, pulmonary toxicity, cytotoxicity, carcinogenicity, nephrotoxicity, hematotoxicity, and cardiac toxicity. Hence, this review concludes with a discussion of various regulatory aspects undertaken by the government agencies in order to minimize the adverse effects associated with herbal nutraceuticals

    IL10 variant g.5311A is associated with Visceral Leishmaniasis in Indian population

    Get PDF
    Background: Visceral Leishmaniasis (VL) is a multifactorial disease, where the host genetics play a significant role in determining the disease outcome. The immunological role of anti-inflammatory cytokine, Interleukin 10 (IL10), has been well-documented in parasite infections and considered as a key regulatory cytokine for VL. Although VL patients in India display high level of IL10 in blood serum, no genetic study has been conducted to assess the VL susceptibility/resistance. Therefore, the aim of this study is to investigate the role of IL10 variations in Indian VL; and to estimate the distribution of disease associated allele in diverse Indian populations. Methodology: All the exons and exon-intron boundaries of IL10 were sequenced in 184 VL patients along with 172 ethnically matched controls from VL endemic region of India. Result and Discussion: Our analysis revealed four variations; rs1518111 (2195 A>G, intron), rs1554286 (2607 C>T, intron), rs3024496 (4976 T>C, 3’ UTR) and rs3024498 (5311 A>G, 3’ UTR). Of these, a variant g.5311A is significantly associated with VL (χ2 = 18.87; p = 0.00001). In silico approaches have shown that a putative micro RNA binding site (miR-4321) is lost in rs3024498 mRNA. Further, analysis of the above four variations in 1138 individuals from 34 ethnic populations, representing different social and linguistic groups who are inhabited in different geographical regions of India, showed variable frequency. Interestingly, we have found, majority of the tribal populations have low frequency of VL (‘A’ of rs3024498); and high frequency of leprosy (‘T’ of rs1554286), and Behcet’s (‘A’ of rs1518111) associated alleles, whereas these were vice versa in castes. Our findings suggest that majority of tribal populations of India carry the protected/less severe allele against VL, while risk/more severe allele for leprosy and Behcet’s disease. This study has potential implications in counseling and management of VL and other infectious diseases

    Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1-xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    Get PDF
    Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1-xGax)₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε₁ - iε₂, spectra. Here, RTSE has been used to obtain the (ε₁, ε₂) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε₁, ε₂) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε₁, ε₂) spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε₁, ε₂) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X-ray diffractometry and energy-dispersive X-ray spectroscopy profiling analyses. Overall the structural, optical and compositional analysis possible by RTSE has assisted in understanding the growth and properties of three stage CIGS absorbers for solar cells and shows future promise for enhancing cell performance through monitoring and control

    Plasmonic Nanocrystal Solar Cells Utilizing Strongly Confined Radiation

    No full text
    The ability of metal nanoparticles to concentrate light <i>via</i> the plasmon resonance represents a unique opportunity for funneling the solar energy in photovoltaic devices. The absorption enhancement in plasmonic solar cells is predicted to be particularly prominent when the size of metal features falls below 20 nm, causing the strong confinement of radiation modes. Unfortunately, the ultrashort lifetime of such near-field radiation makes harvesting the plasmon energy in small-diameter nanoparticles a challenging task. Here, we develop plasmonic solar cells that harness the near-field emission of 5 nm Au nanoparticles by transferring the plasmon energy to band gap transitions of PbS semiconductor nanocrystals. The interfaces of Au and PbS domains were designed to support a rapid energy transfer at rates that outpace the thermal dephasing of plasmon modes. We demonstrate that central to the device operation is the inorganic passivation of Au nanoparticles with a wide gap semiconductor, which reduces carrier scattering and simultaneously improves the stability of heat-prone plasmonic films. The contribution of the Au near-field emission toward the charge carrier generation was manifested through the observation of an enhanced short circuit current and improved power conversion efficiency of mixed (Au, PbS) solar cells, as measured relative to PbS-only devices

    Optical Properties of Magnesium-Zinc Oxide for Thin Film Photovoltaics

    No full text
    Motivated by their utility in CdTe-based thin film photovoltaics (PV) devices, an investigation of thin films of the magnesium-zinc oxide (MgxZn1−xO or MZO) alloy system was undertaken applying spectroscopic ellipsometry (SE). Dominant wurtzite phase MZO thin films with Mg contents in the range 0 ≤ x ≤ 0.42 were deposited on room temperature soda lime glass (SLG) substrates by magnetron co-sputtering of MgO and ZnO targets followed by annealing. The complex dielectric functions ε of these films were determined and parameterized over the photon energy range from 0.73 to 6.5 eV using an analytical model consisting of two critical point (CP) oscillators. The CP parameters in this model are expressed as polynomial functions of the best fitting lowest CP energy or bandgap E0 = Eg, which in turn is a quadratic function of x. As functions of x, both the lowest energy CP broadening and the Urbach parameter show minima for x ~ 0.3, which corresponds to a bandgap of 3.65 eV. As a result, it is concluded that for this composition and bandgap, the MZO exhibits either a minimum concentration of defects in the bulk of the crystallites or a maximum in the grain size, an observation consistent with measured X-ray diffraction line broadenings. The parametric expression for ε developed here is expected to be useful in future mapping and through-the-glass SE analyses of partial and complete PV device structures incorporating MZO.Applied Science, Faculty ofNon UBCEngineering, School of (Okanagan)ReviewedFacult

    Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1−xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    No full text
    Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1−xGax)2Se3 (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2) spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X-ray diffractometry and energy-dispersive X-ray spectroscopy profiling analyses. Overall the structural, optical and compositional analysis possible by RTSE has assisted in understanding the growth and properties of three stage CIGS absorbers for solar cells and shows future promise for enhancing cell performance through monitoring and control

    Green Synthesis and Antibacterial Activity Studies of Silver Nanoparticles from the Aqueous Extracts of Euphorbia hirta

    Get PDF
    The aqueous extracts of Euphorbia hirta was used to synthesise silver nanoparticles using bioreduction method. The nanoparticles were characterised by UV Vis spectroscopic analysis, SEM, EDX, AFM, XRD analysis. The silver nanoparticles were also tested for antibacterial activity in Pseudomonas aeruginosa and Bacillus subtilis. The minimum inhibitory concentration for the synthesised nano particles were also tested against the two bacterial species for the least concentration of 0.5µg/mL. The swarming motility assay and protein leakage assay was also tested for the nanoparticle. The silver nanoparticles were found to be much effective

    The structure of the human <i>IL10</i> (chr1, 206945839–206940947; ENST00000423557).

    No full text
    <p>Exons of the gene are shown in pink, introns in brown. rs1518111 (2195 A>G) and rs1554286 (2607 C>T) were the intronic variant of second and third exons while rs3024496 (4976 T>C) and rs3024498 (5311 A>G) were the 3’ UTR variant of fifth exons.</p
    corecore